CS 267: Applications of Parallel Computers
Lecture 3:

Introduction to Parallel Architectures
and Programming Models

David H. Bailey

based on notes by J. Demmel and D. Culler

http://www.nersc.gov/~dhbailey/cs267

CS267 L3 Programming Models.1

Recap of Last Lecture

° The actual performance of a simple program can
depend in complicated ways on the architecture.

° Slight changes in the program may change the
performance significantly.

° For best performance, we must take the architecture
Into account, even on single processor systems.

° Since performance is so complicated, we need
simple models to help us design efficient
algorithms.

°We illustrated with a common technique for
Improving cache performance, called blocking,
applied to matrix multiplication.

CS267 L3 Programming Models.2

Outline

° Parallel machines and programming models
° Steps in writing a parallel program

° Cost modeling and performance trade-offs

CS267 L3 Programming Models.3

Parallel
Machines and
Programming

Models

CS267 L3 Programming Models.4

A generic parallel architecture

Interconnection Network

Memory

° Where is the memory physically located?

CS267 L3 Programming Models.5

Parallel Programming Models

° Control
 How is parallelism created?
 What orderings exist between operations?
« How do different threads of control synchronize?

° Data

« What data is private vs. shared?
« How is logically shared data accessed or communicated?

° Operations
 What are the atomic operations?

° Cost

* How do we account for the cost of each of the above?

CS267 L3 Programming Models.6

Trivial Example

(o) n-1

S f(ALi])

1=0

° Parallel Decomposition:
« Each evaluation and each partial sum is a task.

° Assign n/p numbers to each of p procs
« Each computes independent “private” results and partial sum.
* One (or all) collects the p partial sums and computes the global

o peodpoodpocdpend

Two Classes of Data:
O O O O

° Logically Shared

e The original n numbers, the global sum.

° Logically Private
 The individual function evaluations.
 What about the individual partial sums?

CS267 L3 Programming Models.7

Programming Model 1. Shared Address Space

° Program consists of a collection of threads of control.
° Each has a set of private variables, e.g. local variables on the stack.

° Collectively with a set of shared variables, e.g., static variables,
shared common blocks, global heap.

° Threads communicate implicitly by writing and reading shared
variables.

° Threads coordinate explicitly by synchronization operations on
shared variables -- writing and reading flags, locks or semaphores.

° Like concurrent programming on a uniprocessor.

CS267 L3 Programming Models.8

Machine Model 1. Shared Memory Multiprocessor

° Processors all connected to a large shared memory.

° “Local” memory is not (usually) part of the hardware.
e Sun, DEC, Intel SMPs in Millennium, SGI Origin

° Cost: much cheaper to access data in cache than in main

memory.

$ $ $

N

network

. J

memory

° Machine model 1a: Shared Address Space Machine (Cray T3E)
 Replace caches by local memories (in abstract machine model).

* This affects the cost model -- repeatedly accessed data should be
copied to local memory.

CS267 L3 Programming Models.9

Shared Memory Code for Computing a Sum

Thread 1 Thread 2
[s = Oinitially] [s = O initially]
local s1=0 local s2=0
fori =0, n/2-1 fori=n/2,n-1
local_s1 =local s1 + f(Ai]) local_s2=local_s2 + f(A[i])
s =s +local_s1 s =s +local_s2

What could go wrong?

CS267 L3 Programming Models.10

Pitfall and Solution via Synchronization

° Pitfall in computing a global sum s =local _s1 + local _s2:

Thread 1 (initially s=0) Thread 2 (initially s=0)
load s [from mem to req]
load s [from mem to reg; initially 0]
s =s+local_sl1 [=local_s1,in reg] s =s+local_s2 [=local _s2,in reg]
store s [from reg to mem] store s [from reg to mem]

Tim
° Instructions from different threads can be interleaved arbitrarily.

° What can final result s stored in memory be?

°Problem: race condition.
° Possible solution: mutual exclusion with locks

Thread 1 Thread 2
lock lock
load s load s
s =s+local_s1 s =s+local_s2
store s store s
unlock unlock

° Locks must be atomic (execute completely without interruption).

CS267 L3 Programming Models.11

Programming Model 2: Message Passing

° Program consists of a collection of named processes.
° Thread of control plus local address space -- NO shared data.
° Local variables, static variables, common blocks, heap.

° Processes communicate by explicit data transfers -- matching send
and receive pair by source and destination processors.

° Coordination is implicit in every communication event.
° Logically shared data is partitioned over local processes.

° Like distributed programming -- program with MPI, PVM.

CS267 L3 Programming Models.12

Machine Model 2: Distributed Memory
° Cray T3E (too!), IBM SP2, NOW, Millennium.

° Each processor is connected to its own memory and
cache but cannot directly access another
processor's memaory.

° Each “node” has a network interface (NI) for all
communication and synchronization.

NI NI N|

memory memory L memory

[interconnect J

CS267 L3 Programming Models.13

Computing s = x(1)+x(2) on each processor

° First possible solution:

Processor 1 Processor 2
send xlocal, proc2 receive xremote, procl
[xlocal = x(1)] send xlocal, procl
receive xremote, proc2 [xlocal = x(2)]
s = xlocal + xremote s = xlocal + xremote

® Second possible solution -- what could go wrong?

Processor 1 Processor 2
send xlocal, proc2 send xlocal, procl
[xlocal = x(1)] [Xlocal = x(2)]
receive xremote, proc2 receive xremote, procl
s = xlocal + xremote s = xlocal + xremote

°What if send/receive acts like the telephone system? The post office?

CS267 L3 Programming Models.14

Programming Model 3. Data Parallel

Single sequential thread of control consisting of parallel operations.

Parallel operations applied to all (or a defined subset) of a data
structure.

Communication is implicit in parallel operators and “shifted” data
structures.

° Elegant and easy to understand and reason about.
° Like marching in a regiment.

° Used by Matlab.

° Drawback: not all problems fit this model.

A = array of all data *f
fA =1(A) T T A A
s = sum(fA) sum

CS267 L3 Programming Models.15

Machine Model 3: SIMD System

° A large number of (usually) small processors.

° A single “control processor” issues each instruction.

° Each processor executes the same instruction.

° Some processors may be turned off on some instructions.

° Machines are not popular (CM2), but programming model is.

control processor

memory memory o memory

[interconnect J

* Implemented by mapping n-fold parallelism to p processors.
 Mostly done in the compilers (HPF = High Performance Fortran).

CS267 L3 Programming Models.16

Machine Model 4: Clusters of SMPs

° Since small shared memory machines (SMPs) are
the fastest commodity machine, why not build a
larger machine by connecting many of them with a
network?

° CLUMP = Cluster of SMPs.

° Shared memory within one SMP, but message
passing outside of an SMP.

°> Millennium, ASCI Red (Intel), ...

° Two programming models:

 Treat machine as “flat”, always use message passing, even within
SMP (simple, but ignores an important part of memory hierarchy).

 Expose two layers: shared memory and message passing
(usually higher performance, but ugly to program).

CS267 L3 Programming Models.17

Programming Model 5: Bulk Synchronous

° Used within the message passing or shared memory
models as a programming convention.

° Phases are separated by global barriers:

« Compute phases: all operate on local data (in distributed memaory)
or read access to global data (in shared memory).

« Communication phases: all participate in rearrangement or
reduction of global data.

° Generally all doing the “same thing” in a phase:
e all do f, but may all do different things within f.

° Features the simplicity of data parallelism, but
wﬂf&ort the restrictions of a strict data parallel
model.

CS267 L3 Programming Models.18

Summary So Far

° Historically, each parallel machine was unique,
along with its programming model and programming
language.

° It was necessary to through away software and start
over with each new kind of machine - ugh.

° Now we distinguish the programming model from
the underlying machine, so we can write portably
correct codes that run on many machines.

« MPI now the most portable option, but can be tedious.

° Writing portably fast code requires tuning for the
architecture.

« Algorithm design challenge is to make this process easy.
« Example: picking a blocksize, not rewriting whole algorithm.

CS267 L3 Programming Models.19

Steps In Writing
Parallel Programs

CS267 L3 Programming Models.20

Creating a Parallel Program

° ldentify work that can be done in parallel.

° Partition work and perhaps data among logical
processes (threads).

° Manage the data access, communication,
synchronization.

° Goal: maximize speedup due to parallelism

Speedup,,,,,(P procs) = Time to solve prob with “best” sequential solution
Time to solve prob in parallel on P processors

<= P (Brent’s Theorem)
Efficiency(P) = Speedup(P)/P
<= 1

° Key question is when you can solve each piece:
e statically, if information is known in advance.
« dynamically, otherwise.

CS267 L3 Programming Models.21

Steps in the Process

O M)

c OO

(@) c

= O = S >

wn - = —_

o D 3o o

S > % £ > — 57 — g

5 = & >

3 Z S

a) < @) .
Overall Grains Processes/ Processes/ Processors
Computation of Work Threads Threads

° Task: arbitrarily defined piece of work that forms the
basic unit of concurrency.

° Process/Thread: abstract entity that performs tasks:
» tasks are assigned to threads via an assignment mechanism.
e threads must coordinate to accomplish their collective tasks.

° Processor: physical entity that executes a thread.

CS267 L3 Programming Models.22

Decomposition

° Break the overall computation into individual grains
of work (tasks).

 |dentify concurrency and decide at what level to exploit it.

 Concurrency may be statically identifiable or may vary
dynamically.

It may depend only on problem size, or it may depend on the
particular input data.

° Goal: identify enough tasks to keep the target range
of processors busy, but not too many.

e Establishes upper limit on number of useful processors (i.e.,
scaling).

° Tradeoff: sufficient concurrency vs. task control
overhead.

CS267 L3 Programming Models.23

Assignment

° Determine mechanism to divide work among threads
e Functional partitioning:

- Assign logically distinct aspects of work to different thread,
e.g. pipelining.
e Structural mechanisms:

- Assign iterations of “parallel loop” according to a simple rule,
e.g. proc j gets iterates j*n/p through (j+1)*n/p-1.

- Throw tasks in a bowl (task queue) and let threads feed.
« Data/domain decomposition:
- Data describing the problem has a natural decomposition.

- Break up the data and assign work associated with regions,
e.g. parts of physical system being simulated.

° Goals:
 Balance the workload to keep everyone busy (all the time).
» Allow efficient orchestration.

CS267 L3 Programming Models.24

Orchestration

° Provide a means of
« Naming and accessing shared data.
« Communication and coordination among threads of control.

Goals:

e Correctness of parallel solution -- respect the inherent dependencies
within the algorithm.

e Avoid serialization.

 Reduce cost of communication, synchronization, and management.
* Preserve locality of data reference.

CS267 L3 Programming Models.25

Mapping

° Binding processes to physical processors.

° Time to reach processor across network does not
depend on which processor (roughly).

 lots of old literature on “network topology”, no longer so important.

° Basic issue IS how many remote accesses.

Proc

Cache

really Wy

_ Proc .I:

Cache\\\‘

A\

ASt

\

slow

Memory

slow
o

\

CS267 L3 Programming Models.26

Example

° s =f(A[1]) + ... + f(A[n])

° Decomposition
« computing each f(A[j])
* n-fold parallelism, where n may be >>p
e computing sum s

° Assignment
e thread k sums sk = f(A[k*n/p]) + ... + f(A[(k+1)*n/p-1])
e thread 1 sums s = sl+ ... +sp (for simplicity of this example)
e thread 1 communicates s to other threads

° Orchestration

e starting up threads

e communicating, synchronizing with thread 1
° Mapping

e processorj runs thread |

CS267 L3 Programming Models.27

Administrative Issues

°> Assignment 2 will be on the home page later today
e Matrix Multiply contest.
* Find a partner (outside of your own department).
 Due in 2 weeks.

° Reading assignment
« www.nersc.gov/~dhbailey/cs267/Lectures/LectO04.html
e Optional:
- Chapter 1 of Culler/Singh book
- Chapters 1 and 2 of www.mcs.anl.gov/dbpp

CS267 L3 Programming Models.28

Cost Modeling
and
Performance
Tradeoffs

CS267 L3 Programming Models.29

ldentifying enough Concurrency

. . A
° Parallelism profile | x time(f
e areais total work done

P
(&
c

Simple Decomposition: o

f (A[i]) is the parallel task S 1 x time(sum(n))
o
O

sum is sequential S SN

Time

° Amdahl’s law
 let s be the fraction of total work done sequentially

1 1 100
Speedup(P) < < - o |
1 —S S 80 |
S+ 1 ——5=0%
o A P El 62 1 —B—S=1%
O) & 07 S=5%
S p After mapping B a0} S=10%
3 — ol
g 10 + I
© = ~ A : : : l

0 20 40 60 80 100

CS267 L3 Programming Models.30 Processors

Algorithmic Trade-offs

° Parallelize partial sum of the f's
e what fraction of the computation is “sequential”

A

\ p X time(sum(n/p))

Concurrency

§ 1 x time(sum(p))

N N

A
7

 What does this do for communication? locality?
« What if you sum what you “own”

° Parallelize the final summation (tree sum)

A

\ p X time(sum(n/p))

1 x time(sum(log_2 p))

-]

1 N
>

Concurrency
/

N

 Generalize Amdahl’s law for arbitrary “ideal” parallelism profile

CS267 L3 Programming Models.31

Problem Size is Critical

Amdahl’s Law Bounds

° Suppose Total work=n +P o

90 +

° Serial work: P ol
° Parallel work: n o7 n
o . . o 07 —e—1000
s = serial fraction T gl —m—10000
(% 1000000
= P/ (n+P) o
30 +
20 + ,
1 r,/"M»
A ‘ ‘ ‘ ‘
0 20 40 60 80 100

Processors

In general, seek to exploit a large fraction of the peak parallelism
in the problem.

CS267 L3 Programming Models.32

Load Balancing Issues

° Insufficient concurrency will appear as load imbalance.

Idle Time if n does not divide by P

// Idle Time due

to serialization

A
L

Concurrency

A

° Use of coarser grain tends to increase load imbalance.

° Poor assignment of tasks can cause load imbalance.

° Synchronization waits are instantaneous load imbalance

Work (1)
maxp(Work (p) tidle)

Speedup (P) =

CS267 L3 Programming Models.33

Extra Work

° There is always some amount of extra work to
manage parallelism -- e.g. deciding who is to do

what.

Work (1)
Maxp(Work (p) Tidle +extra)

A
7

Concurrency

\ 4

Speedup (P) =

CS267 L3 Programming Models.34

Communication and Synchronization

Coordinating Action (synchronization)
requires communication

A
7

%)
© _
Getting data from where it is
produced to where it is used
does too.
Work (1)
Speedup(P) <

max(Work (P) +1dle +extra +comm)

°There are many ways to reduce communication
costs.

CS267 L3 Programming Models.35

Reducing Communication Costs

° Coordinating placement of work and data to
eliminate unnecessary communication.

A

N

° Replicating data.

° Redundant work.

A

N

\ 4

° Performing required communication efficiently.

* e.g., transfer size, contention, machine specific optimizations
CS267 L3 Programming Models.36

The Tension

Work (1)

P) < -

~ | 7

Minimizing one tends to
increase the others
°Fine girain decomposition and
flexible assignment tends to
minimize load imbalance at the
cost of increased communication

* In many problems communication goes
like the surface-to-volume ratio

e Larger grain => larger transfers, fewer
synchronization events

> Simple static assignment reduces
extra work, but may yield load
Imbalance

CS267 L3 Programming Models.37

The Good News

° The basic work component in the parallel program
may be more efficient than in the sequential case.

e Only a small fraction of the problem fits in cache.

* Need to chop problem up into pieces and concentrate on them to
get good cache performance.

e Similar to the parallel case.
* Indeed, the best sequential program may emulate the parallel one.

°® Communication can be hidden behind computation.
 May lead to better algorithms for memory hierarchies.

° Parallel algorithms may lead to better serial ones.
« Parallel search may explore space more effectively.

CS267 L3 Programming Models.38

